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ABSTRACT 

 

It is a well-known fact that in the literature of information theory, a variety of divergence (distance or cross entropy) 

measures is available, each with its own merits and limitations. These measures are applicable to various disciplines of 

Mathematical Sciences. One such discipline pertaining to Operations Research is portfolio analysis. In the present 

communication, we have developed two new parametric measures of cross entropy and consequently provided the 

applications of these measures for the study of optimization principles for the development of measures of risk in 

portfolio analysis. We have observed that minimizing these measures implies the minimization of the expected utility of 

the risk-prone person and maximization of the expected utility of a risk-averse person. 
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INTRODUCTION 
 

Markowitz (1952) introduced the modern portfolio 

selection theory, which deals with the relevant beliefs 

about future performances and ends with the choice of 

portfolio. We consider a fundamental rule that the 

investor should consider expected return a desirable thing 

and variance of return an undesirable thing. Markowitz 

(1952) illustrated geometrically relations between beliefs 

and choice of portfolio according to the “expected 

returns-variance of returns” rule. It is worth mentioning 

that some of the investments made by the investor may 

yield low returns, but these may be compensated by 

considerations of relative safety because of a proven 

record of non-volatility in price fluctuations. On the other 

hand, there might be some better investments which 

would be promising and achieve high expected returns, 

but these may be prone to a great deal of risk. However, 

investor's major problem is to find a satisfactory measure 

of risk. The earliest measure proposed for the return on all 

investments was variance and its proposal was based upon 

the fundamental argument that risk increases with 

variance. Accordingly, Markowitz (1952) introduced the 

concept of mean-variance efficient frontier, which 

enabled him to find all the possible efficient portfolios 

that simultaneously maximize the expected returns and 

minimize the variance. 

 

Jianshe (2005) developed a new theory of portfolio and 

risk based on incremental entropy and Markowitz's (1952) 

theory. He developed this theory by replacing arithmetic 

mean return adopted by Markowitz (1952), with 

geometric mean return as a criterion for assessing a 

portfolio. The new theory emphasizes that there is an 

objectively optimal portfolio for given probability of 

returns. Some portfolio optimization methodology has 

been discussed by Bugár and Uzsoki (2011) whereas 

other work related with diversification of investments has 

been provided by Markowitz (1959). Bera and Park 

(2008) remarked that Markowitz's (1952) mean-variance 

efficient portfolio selection is the one of the most widely 

used approaches in solving portfolio diversification 

problem. However, contrary to the notion of 

diversification, mean-variance approach often leads to 

portfolios highly concentrated on a few assets. In their 

paper, Bera and Park (2008) have proposed to use cross 

entropy measure as the objective function with side 

conditions coming from the mean and variance-

covariance matrix of the resampled asset returns and 

illustrated their procedure with an application to the 

international equity indexes. Now since risk is associated 

with the concept of uncertainty, we should be able to 

develop measures of risk based on the concepts of 

divergence or cross entropy. We can develop such 

measures of divergence and then show how we can 

develop efficient frontiers for maximizing expected 

returns and simultaneously minimize measures of risk. 

 

In the literature, there exist many well-known measures of 

divergence which find their applications to a variety of 

fields. One such measure is due to Kullback-Leibler 

(1951), which is an important measure of distance and is 

very useful in many real life situations. This measure is 

given by 
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Recently, Parkash and Mukesh (2011) have introduced a 

new measure of cross entropy (divergence), given by 
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and based on this divergence measure (1.2), Parkash and 
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Mukesh (2012a) have developed an optimization principle 

for the measurement of risk in portfolio analysis. 

 

It has been observed that generalized measures of cross 

entropy should be introduced because upon optimization, 

these measures lead to useful probability distributions and 

mathematical models in various disciplines. These 

generalized measures introduce flexibility in the system. 

Some parametric measures of directed divergence are: 
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which is Renyi's (1961) probabilistic measure of directed 

divergence. 
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which is Havrada and Charvat's (1967) probabilistic 

measure of divergence. Some other interesting findings 

related with the literature of cross entropy have been 

provided by Taneja and Kumar (2004), Pardo (2003), 

Parkash and Mukesh (2012b) etc. 

 

In the present communication, we introduce two new 

parametric measures of cross entropy and make their use 

for the measurement of risk in portfolio analysis. Before 

developing these measures, we need a brief introduction 

to the concept of mean-variance efficient frontier due to 

Markowitz (1952). This introduction has been provided 

by Kapur and Kesavan (1992) as explained below: 

 

1.1 Markowitz (1952) mean-variance efficient frontier 

Let j be the probability of the jth outcome for 

mj ,,2,1  and ijr  be the return on the ith  security for 

ni ,,2,1   when the jth outcome occurs. Then the 

expected return on the ith security is given by 
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Also, variances and covariances of returns are given by 
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Let a person decide to invest proportions nxxx ,,, 21   of 

his capital in n securities. Assume that 0ix for all i , and 

that 
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Then, the expected return and variance of the return are 

given by 
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Markowitz (1952) suggested that nxxx ,,, 21   be chosen 

to maximize E  and to minimize V or alternatively, to 

minimize V  when E  is kept at a fixed value. Now 
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where 
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that is, 
jR is the return on investment when the jth  

outcome arises and R is the mean return on investment. 

 

Next, we discuss an optimizational principle developed by 

Parkash and Mukesh (2012a) by using divergence 

measure (1.4). 

 

1.2 Optimization Principle developed by Using 

Measure (1.2) 

Markowitz’s (1952) criterion for a choice from 

nxxx ,,, 21  was to minimize the variance, that is, to 

make
1 2, , mR R R as equal as possible among themselves. 

Any departure of
1 2, , mR R R from equality was 

considered a measure of risk. The same purpose can be 

accomplished if we choose nxxx ,,, 21  so as to minimize 

the directed divergence measure given by (1.2) of the 

distribution
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from  m ,,, 21  , that is, we choose nxxx ,,, 21   so 

as to minimize the following measure: 
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Thus, we can formulate an optimization principle as 

follows: 

Choose nxxx ,,, 21   so as to minimize 

 
 

2

1 1 2 2

1 1 1 1 2 2

m m
j

j j j n nj

j j j j n nj

x r x r x r
x r x r x r




 

   
  

 
,       (1.15) 



Parkash and Mukesh 2965 

subject to 
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and 
1 20, 0, , 0nx x x   . 

Next, we propose two new parametric measures of cross 

entropy and study some of their essential properties. 

 

2 New parametric measures of cross entropy 
In this section, we consider the following set of all 

complete finite discrete probability distributions: 
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and introduce the following parametric measure of cross 

entropy. 

 

2.1 One parametric measure of cross entropy 

For
nQP , , we propose a new parametric measure of 

cross entropy given by the following expression: 
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where   is a real parameter. 

Note: We have 
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which is Kullback-Leibler’s (1951) measure of cross 

entropy. Thus,  ;D P Q
 is a generalized measure of cross 

entropy. 

 

Some of the important properties of this cross entropy are: 

1.  ;D P Q
 is a continuous function of nppp ,,, 21   and 

nqqq ,,, 21  . 

2.   0;D P Q   and vanishes if and only if P Q . 

3. We can deduce from condition (2) that the minimum 

value of  ;D P Q
 is zero. 

4. We shall now prove that  ;D P Q
 is a convex function 

of both P  and Q . This result is important in establishing 

the property of global minimum. 

Let 
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Hence, the Hessian matrix of the second order partial 

derivatives of f with respect to nppp ,,, 21  is given 

by ijaH 1 , where 
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which is positive definite. Similarly one can prove that the 

Hessian matrix of second order partial derivatives of f  

with respect to nqqq ,,, 21   is positive definite. Thus, we 

conclude that  ;D P Q
 is a convex function of both 

nppp ,,, 21   and nqqq ,,, 21  . Moreover, with the help of 

numerical data shown in the following table 1, we have 

presented  ;D P Q
 as shown in the following figure 1. 

 

Table 1.  ;D P Q
 against p  for 2, 10n   . 

p q  ;D P Q
 

0.1 0.5 0.5906 

0.2 0.5 0.3104 

0.3 0.5 0.1310 

0.4 0.5 0.0317 

0.5 0.5 0.0000 

0.6 0.5 0.0317 

0.7 0.5 0.1310 

0.8 0.5 0.3104 

0.9 0.5 0.5906 

 
Fig. 1. Convexity of  ;D P Q

 with respect to P. 
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Under the above conditions, the function  ;D P Q
 is a 

valid parametric measure of cross entropy. 

 

Next, we propose a two parametric measure of cross 

entropy. 

 

2.2 Two parametric measure of cross entropy 

For any
nQP , , we propose a new parametric measure 

of cross entropy given by 
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Where ,  are real parameters representing some 

environmental factors, and the presence of these 

parameters gives a great deal of flexibility towards 

applications and also take into account the factors which 

might not have been possible otherwise. 

Note: We have 
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Thus,  , ;D P Q 
 is a generalization of Kullback-Leibler’s 

(1951) measure of cross entropy. 

 

Some of the important properties of this cross entropy are: 

1.  , ;D P Q 
 is a continuous function of nppp ,,, 21   and 

nqqq ,,, 21  . 

2.  , 0;D P Q    and vanishes if and only if P Q . 

3. We can deduce from condition (2) that the minimum 

value of  , ;D P Q 
 is zero. 

4. We shall now prove that  , ;D P Q 
 is a convex function 

of both P  and Q . 
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of g  with respect to nppp ,,, 21   is given by ijbH 2 , 
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which is positive definite. A similar result is also true 

when we consider the partial derivatives of g with respect 

to nqqq ,,, 21  . Thus, we conclude that  , ;D P Q 
 is a 

convex function of both nppp ,,, 21   and nqqq ,,, 21  . 

Moreover, we have presented  , ;D P Q 
 against p for 

2, 10, 15n      as shown in the following figure 2. 

 

 
Fig. 2. Convexity of  , ;D P Q 

 with respect to P. 

 

Under the above conditions, the function  , ;D P Q 
 is a 

valid parametric measure of cross entropy. 

 

3 Measuring risk in portfolio analysis using 

parametric measures of cross entropy 
In this section, we consider the following two cases for 

measuring risk in portfolio analysis by using two different 

parametric measures of cross entropy: 

 

3.1 Measure of risk by using cross entropy (2.2) 
Recently, Parkash and Mukesh (2012a) provided an 

optimization principle involving non-parametric measure 

of cross entropy (1.2) for the development of measures of 

risk when a person decides to invest proportions of his 

capitals in different securities. If we use one parametric 

measure of divergence developed in (2.2), we get a 

measure of risk in accordance with the optimization 

principle discussed in subsection 1.2. This measure is 

developed as follows: 
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person is risk-averse. If 
2

1
 , minimizing the measure 

(3.1), we mean minimization of the expected utility of a 

person whose utility function is given 
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Thus, minimizing this measure implies the minimization 

of the expected utility of the risk-prone person and 

maximization of the expected utility of a risk-averse 

person. 

 

3.2 Measure of risk by using cross entropy (2.3) 
If we use the two parametric measure of cross entropy 

developed in (2.3), we can get another measure of risk 

discussed below: 
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           
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.                   (3.2) 

If   , minimizing the measure (3.2), we mean the 

maximization of expected utility of a person whose utility 

function is given by  
R

x

xxu

log

2
2

1

2 












. In this case 

the person is risk-averse. If   , minimizing the 

measure (3.2), we mean minimization of the expected 

utility of a person whose utility function is given 

by  
R

x

xxu

log

2
2

1

2 












. In this case the person is risk-

prone. 

 

Thus, minimizing this measure implies the minimization 

of the expected utility of the risk-prone person and 

maximization of the expected utility of a risk-averse 

person. 

 

Concluding Remarks 

Our study reveals that by using parametric measures of 

cross entropy, we can talk of maximizing the expected 

utility of risk-averse persons and of minimizing the 

expected utility of risk-prone persons. Such a study can be 

made available by the use of some other measures of 

cross entropy. 
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